[image: image1.jpg]dzu dictate2us

dictate2us
 dictate2us, Maple House, Haymarket Street, Bury, BL9 0AR
t: +44 (0) 161 762 1100, operations@dictate2us.com

John_Forbes_part_2

Speaker key

S1
Roger Emsley

S2
John Forbes

	Timecode
	Speaker
	Transcript

	00:00:02
	S1
	This is part two of the interview with John Forbes for the Leo Oral History Project. John, tell us, did you do national service?

	00:00:15
	S2
	Yes, I did, from 1958 to 1960. After basic training, I opted for the education corps. I thought this would be useful as I thought teaching was going to be my thing. In the later stages of national service, I was stationed Aldershot and they were very understanding people there who knew that national service people would be looking for a job. After I thought I should explore alternatives to teaching and in one book and in a paper, I believe, I found casual reference to Leo computers and so I applied. I went for the aptitude; the small set of instructions was explained followed by a coding exercise to see if we had understood them. Then, there was an interview by John Smison who was the…I believe the training manager. I didn’t think I’d done particularly well on the course, but nonetheless, an offer appeared, which I accepted, so I started my own training course at Hartree House on February 29th, 1960, and this lasted, I remember, until April 1st, 1960.

	00:01:44
	S1
	So maybe now take us through your Leo career, talking about the various jobs you did and dates, which computers you worked on and your role as the years passed.

	00:02:01
	S2
	On the training course, my first job under the direction of Ernie Roberts, who was the manager of Leo III software was to per time each instruction on Leo III from the microcode flowcharts, whatever they were at the time. It turned out that this was okay for simpler instructions such as add, but for editing instructions—and Leo III had a couple of very advanced editing instructions—it was almost impossible to come up with a meaningful formula owing to the number of potential different iterations that could be made. After that, I was asked to create an open file routine for Leo II which would fit onto one drum sector. Well, I think I did that and the next thing I knew, I was giving the instruction part of the aptitude test, so that was the very first days. Not long after this, I heard that there’s going to be an advanced programming course within Leo, so I gingerly asked if I could go on it. The answer was, “No, you’ll be teaching part of it.” Such was the speed progressing from no knowledge to a little knowledge in a short time at Leo in 1960. When I was told I was to work on the Intercode translator, initially, I was the only one to do this job, but what was Intercode? What was a translator? I received a short briefing on the perceived problems. One Intercode instructions could become multiple machine instructions. For example, hardware would provide three modification registers which could be included in the instructions, but another 17 to make the total 20 were to be provided by software. Other features were that in the programme listing that was produced, each entry point from a branch instruction was to show the source of the branch to that point. Go-to had not yet been banned. The translator, the Intercode translator, had to interface closely with the master routine which was another piece of Leo III software absolutely basic to the design. This would be both in creating entries to the master routine, for example, IO operations, and describing the requirements of the object programme before it was loaded. For example, how much memory did it require, which devices would it need, were there overlays in the programmes. At the end of this briefing, “Off you go, John,” and off John went. It was a fascinating challenge. Large collections of data from jumps both backward and forward were required. Implementation of the 17 extra registers had to be designed and interface with the master routine and means of describing any programme requirements had to be created in conjunction with Adrian Rymell and his talented master routine programme. It transpired that to do all this, three passes of the data were required, so I’ll explain this very briefly. The first pass simply checked the data for accuracy like any normal suite of programmes. The second pass, most of the work and the creation of the basic object code and the third pass simply added additional code necessary for the passing of information to the master routine. During this process, we discovered that a further machine code instruction was needed to implement the extra modification registers and then a minor change was needed to the routine and it caused the programme to enter the master routine. Both of these changes were implemented remarkably quickly by changes to the microcode programmes and these were made by the responsible engineers, but the translator itself, a programme that the master routine had to deal with. At the outset, there was no master routine, so initially, all code was in machine code. We had to put with this initially but gingerly, the two teams stepped forward and contact was made between the master routine and the translator and the programmes it produced. Then came the idea that we should add all the machine code instructions to the Intercode repertoire to translate…allow the translator to be translated into itself. Subsequently to that, the Intercode translator was written and maintained in Intercode. We later add an inability to create dumps of various parts of a programme without going through the whole retranslation process and this was well-received by users. Can I go onto testing or do you want to have a gap there?

	00:08:13
	S1
	No, let’s talk about testing.

	00:08:15
	S2
	Okay. One major challenge with the translator and all the other software programmes at the time was testing. Leo III/1 was not yet installed at Hartree House but was being commissioned at the Leo factor in Acton in West London. Engineers needed to work on it during the day. Fortunately, we needed lunch and had to go home in the evening. The master routine programmers also needed to test their programmes so I had to work closely with them on sharing the available time. In the latter stages, we could share testing time using the translator as test data for the master programme or certain parts of it. We were also fortunate at that time to have the help of a Leo staff member of South Africa, to which Leo III/2 had been sold, who provided great help in creating test data and checking results. From this experience, I think I learned that I was learned to take on a challenge which when first explained to me as a programmer with six months experience made very little sense. (Laughs) Then we go into CLEO.

	00:09:42
	S1
	Okay, tell us about CLEO which stands for…?

	00:09:46
	S2
	Clear Language for Expressing Orders. (Laughs)

	00:09:50
	S1
	Well done.

	00:09:57
	S2
	After finishing the Intercode translator, the question of a CLEO compiler came up. CLEO was a high-level language intended to compete with COBOL. I was aware that within Leo, there was a vigorous debate between CLEO and COBOL and which compiler should be written. I was not party to this debate. I think it’s weird of me to say that at that time, there was no appreciation or need for computers to talk to each other, although by having common tape or other standards and formats or by having programmes that might have had a chance of being run on more than one machine. It was always, “My X is better than your Y,” kind of environment. My instructions were to create a CLEO compiler and rather than the three-person team I had for Intercode, I had a ten-person team for CLEO. As far as I’m aware, this would be the first compiler in the UK to deal with both business and mathematical and scientific programmes. I divided it into two sections; one to deal with the data definition, which was, in many ways, similar to that of COBOL and other with the actual instructions which ranged from, as I said, business to mathematical. Because of this, we quickly became aware of the need to analyse carefully both the data definition and the coding using a reverse Polish technique which ensured that both mathematical functions, simple or complex, were performed in the correct sequence and that the correct level of data was always addressed, whether being a simple single item or a larger collection of related data. The experience we had gained in the character-by-character analysis in writing the Intercode translator was obviously extremely valuable in this. One of the main suggestions that was made from outside the group was that the output of the compiler should be an Intercode programme rather than machine code and that Intercode programme could obviously be handled by the programme Intercode translator. This saved a lot of time in creating a work in progress for translating CLEO programmes to machine code. It did of course mean that each compilation of any programme took longer and no study was ever made, to my knowledge, of the net benefits of either approach. The CLEO compiler process was, as you can imagine, rather more complex than the Intercode translator. I did write an article for the Computer Journal which appeared in July 1975 on explaining some of the methodology that was used in both these two systems, and that’s available for those who would like to know about the working use of the two programmes. Sorry, I don’t have the precise reference.

	00:13:48
	S1
	Okay, so in your time at Leo, did you get the impression that you were making history in terms of the computer era?

	00:14:04
	S2
	No, I don’t think I did. I didn’t have a proper recognition of how advanced some of the software was. I mean as I said, I was thrown off the deep end and I was swimming like mad. In hindsight, it obviously was groundbreaking, but I was in there doing my thing. One thing I should add before the end of my Leo III existence is that even before I had finished working on the compiler, I began to get requests from sales consultants to accompany them on visits to clients. The sales process for Leo had moved on from its initial desire to see itself as business partners with clients to competing in an environment of “My computer is better than your computer because of A, B, and C.” At first, this was purely on the hardware front. How big is the memory, how fast are the mag tapes and so on. Slowly, it became more like “Why is CLEO better than Nebula? What does the master programming do? What is this multi-programming thing and is it really useful for me? Why does the master programme take so much memory?” To a person who is not a natural salesman, this was, at first, a difficult experience, but soon, I learned and anticipate what the next question was going to be and how to handle it. Interestingly, there was no formal group created for this purpose and back on the CLEO team, I was fortunate I had two very proficient section leaders who are able to handle things in my absence.

[00.16.01]

[End of Audio]

Duration 16 minutes and 01 seconds
Page 1 of 5

